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Abstract

Social psychologists attempt to explain how we interact by appealing

to basic principles of how we think. To make good on this ambition,

they are increasingly relying on an interconnected set of formal tools

that model inference, attribution, value-guided decision-making, and

multi-agent interactions. By reviewing progress in each of these areas

and highlighting the connections between them, we can better appreci-

ate the structure of social thought and behavior, while also coming to

understand when, why, and how formal tools can be useful for social

psychologists.
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1. INTRODUCTION

Social psychology endeavors to bring two eyes to focus on a common point. One eye is

fixed on nature’s most beguiling design: Human social thought and behavior. Sociality lays

at the heart of human intelligence, cooperation and conflict; it animates politics, history,

justice, art and science; it both demands and offers our sense of meaning. Social psychology

seeks to explain precisely these things. The other eye is fixed on a particular manner of

explanation: One grounded in general principles of human minds. From its inception, social

psychology has aspired to explain human’s social lives by understanding the workings of each

individual’s mind—their thoughts, feelings, and actions, and the law-like mental processes

that govern them.

As a practical matter, then, it is hardly surprising that a peculiar form of double vision

characterizes so many of the field’s activities. After all, it isn’t easy to discover the general

principles of individuals’ minds that give rise to the spectacular complexity and power of

human sociality. More than one paper, therefore, addresses an expansive topic such as

romantic attraction, racial prejudice, or rationalization, by analyzing how people rate the

apparent attributes of artificial faces, or by measuring the effect of primes on categorizations,

or by recording the neural response to the names of friends and enemies, and so forth. On

the one hand, this is exactly what social psychologists must do: to attempt, against all odds,

to reconstruct the form of general principles from the fragmentary findings of individual

experiments. On the other hand, it often feels as if something is missing: the common focal

point where the mode of explanation and object of study meet.

Not just the promise of social psychology, but also its pathologies, were evident from its

earliest days. Lewin (1936) lamented the “mere piling up facts” practiced by his contempo-

raries, which “can only lead to a chaotic and unproductive situation.” Heider (1958) echoed

Lewin’s call: “[W]e shall not attain a conceptual framework by collecting more experimental

results. Rather, conceptual clarification is prerequisite for efficient experimentation. Such

systematization is an important feature of any science and reveals relationships among
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highly diverse events.” Like many of their contemporaries, Lewin and Heider thought the

way to make progress might be to formalize general principles of individual mental processes

in computational terms.

People claim a variety of advantages to computational methods. Sometimes math is

useful because it allows us to draw conclusions from premises with quantitative precision.

We can determine how long it will take to drive between two cities at a 40 miles per hour;

how much weight a bridge will bear; how close a comet will pass to our planet, and on which

evening we can glimpse its fiery tail. This works because physical objects like cars, bridges,

and comets behave according to sufficiently simple, regular rules. Cognitive operations,

however, are so complex and variable, relative to the simplicity of the psychological models

used to describe them, that the precise quantitative predictions of those models are rarely

taken seriously. This is especially true for the kinds of cognitive operations of interest to

social psychologists.

The real advantage of formal models in psychology, then, is not that they afford proof

or precision. Rather, as Lewin imagined, it is because they foster conceptual clarity. This

is due to three main virtues: Abstraction, convention, and compositionality.

Math is a highly abstract. The same number 2 can characterize a set of apples, ideas,

or centuries; the same exponential relation can capture the growth of a bank account or the

spread of a virus, and so on. Consequently, math often helps us to see the broad organizing

principles of a system in their elemental form.

Of course, many verbal theories in psychology are also highly abstract. In the case

of verbal theories, however, this is often considered a disadvantage, because abstraction

obscures meaning. For instance, much work supports the idea that cooperation is often our

automatic, or intuitive, response (Rand et al. 2014). This is an important insight. But, if

it were stated so abstractly and as a verbal theory alone, different peoples’ understanding

of what counts as “cooperation”, “automatic”, “intuitive”, and so forth, could lead to

very different interpretations of the meaning of the theory—and, ultimately, the sorts of

protracted and acrimonious scientific debates fueled by mutual misunderstanding.

A second advantage of formal models, then, is that they are built upon conventionally

understood concepts and relations: numbers, operators, sets, functions, and so on. By

grounding verbal theories in these mathematical conventions, it becomes much easier for

people to share a common understanding of their meaning. Thus, for instance, cooperation

could be defined as a certain type of behavioral strategy in a certain type of multiplayer

game. Although such a definition will be limiting in important ways, it has the virtue

of scaffolding mutual understanding. It would also be more clear precisely what kind of

evidnece bears on the claim. Math, then, allows abstract ideas to be communicated with

less ambiguity about meaning, often bringing us a step closer to Lewin’s goal of conceptual

clarity.

Finally, these conventions are typically compositional. In other words, math has built

a system of concepts and relations that play nicely with each other. In the familiar case of

Newtonian mechanics, for instance, the mathematical tools that describe position, velocity,

force, and momentum interact sensibly, and can be composed in solving new problems. The

same is true in psychology: As we shall see, the computational cognitive models used to

describe inference, attribution, value-guided decision-making, and game theory naturally in-

teract with each other, and can be composed to model complex cognitive processes. For the

same reason, computational cognitive models have enabled especially fertile exchange with

neighboring fields in the social and cognitive sciences: sociology, anthropology, evolutionary
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biology, philosophy, linguistics, computer science, economics, and many more.

At their best, computational models can help us to formulate the kinds of abstract

theories necessary to ground human sociality in psychological principles, and to do so in

way that makes our meaning clear and our progress useful to others. The review that follows

is highly selective, focusing on a few areas of outstanding success in order to illustrate the

potential of formal models, as well as to reflect on their limitations.

2. INFERENCE

Humans form beliefs that go beyond the immediate sensory data available to us. We hear

a squishy thwack and believe that our daughter dropped an egg in the kitchen; we see a

fleeting expression and believe our spouse has tired of these dinner guests; we smell a mix

of rotten food and wet fur and believe our dog buried a bone in the compost heap. How

can we know so much from so little?

Several computational frameworks are available, and each of them enjoys considerable

support. Perhaps the simplest models depend on statistical association: If the last thwack

was a brownie-bound egg gone astray, this one is likely to be, as well (e.g. Rescorla 1972). It

is also possible to define a set of deductions, or other rule-like transformations, operating of

propositions: “If thwack, then either dropped eggs or water balloons; If kitchen, not water

balloon; therefore, egg” (e.g. Newell & Simon 1956). Each of these sorts of approaches plays

an important role in explaining certain cases. An especially powerful and productive class

of models, however, instead adopts a Bayesian approach (Griffiths et al. 2008).

2.1. The Bayesian framework

As employed in cognitive science, the Bayesian approach is characterized by a few essential

features.

1. People represent causal models. That is, they know things like “dropped eggs cause

thwacks” (as do thrown eggs, dropped water balloons, etc.), “kids cause dropped

eggs” (as do grownups, occasionally), “vacuous chit-chat bores my spouse”, and so

on.

2. These causal models are probabilistic, and often generative , meaning that given

certain inputs (“causes”) the models generate simulated outputs (“effects”) according

to their probability of occurrence (Vul & Pashler 2008). In other words, like a plinko

board, our causal models allow us to drop mental marbles and see where they land.

Generative models don’t directly encode statistics like “half the marbles land on the

right side”. Rather, by dropping lots of marbles, we can estimate the distribution of

landing positions.

Causal model: A
model of causal

relationships (e.g.,

“sparks cause fire,
smoke does not”),

rather than their

mere associative or
predictive ones (e.g.,

smoke and sparks
both predict fire).

Generative model: A
cognitive model that
generates data,

given background

conditions. For
instance, given a

person’s goal as

input, it could
generate

representations of

their likely actions.

Abduction: A
method of inference

in which one favors
the hypothesis (i.e.,

unobserved causes)

that best explains
the data (i.e.,
observed effects):
”inference to the
best explanation”

3. We adopt beliefs about unobserved variables based on how well those beliefs explain

the observed ones, given our causal models. This is sometimes called abduction, or

“inference to the best explanation”. Upon observing new information (“data”, d),

one updates the probability of each hypothesis hi about unobserved variables based

on the likelihood of the observed data given that hypothesis P (d|hi), according to

one’s causal model. This likelihood is balanced against the prior probability of the

data P (hi), as well as the same factors for every other one of the n hypotheses under

consideration:
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P (hi|d) =
P (d|hi)P (hi)∑n

j=1 P (d|hj)P (hj)
1.

Thus, for instance, the data is a “thwack”, one hypothesis is a dropped egg in the kitchen,

another hypothesis is a dropped water balloon in the kitchen, and a third hypothesis is a

dropped loaf of bread. The first and third have high priors P (h), while the second does

not—i.e., eggs and bread are often dropped in kitchens, but water balloons only rarely. The

first and second have high likelihoods P (d|h), while the second does not—i.e., dropped eggs

and water balloons often “thwack”, but dropped bread rarely does. On this comparative

basis, then, the first hypothesis is assigned the highest probability given the data, P (h|d).
Bayesian models have transformed cognitive science for several reasons. First, they unify

an astonishing variety of cognitive acts under a single general framework. The very same

abstract model usefully explains perception (e.g., how we infer depth from a flat projection

on the retina; Nakayama & Shimojo 1992), memory (e.g., how we reconstruct the details of

patchy memories; Gershman 2021), language (e.g., how we infer a speaker’s meaning from

their words; Goodman & Frank 2016), categorization (e.g., how we infer the taxonomy of

animals from observable features; Tenenbaum et al. 2006), theory of mind (e.g., how we

infer somebody’s goals from their actions; Baker et al. 2009), and much more.

Second, Bayesian models are rational models. That is, they specify how an idealized

agent with unbounded cognitive resources would optimally solve inference problems. Of

course, humans neither have unbounded cognitive resources, nor are they perfectly designed.

Nevertheless, understanding the problem that an organism is trying to solve and the abstract

form of an idealized solution often helps to structure inquiry into the actual mechanisms

underlying thought and behavior (Marr 1982; Tinbergen 1963).

Finally, as we will see in subsequent sections, the Bayesian formalization of inference is

usefully compositional, in the sense that it can be integrated with other formal frameworks

for understanding attribution, learning, choice, and so forth. This compositionality owes

both to formal nature of Bayesian theories, as well as their substantive commitment that

humans reason over probabilistic generative models of causal relations.

2.2. Bayesian models of mental state inference

The application of Bayesian methods to model theory of mind—how people infer mental

states, and how they predict thought and behavior given those inferences—is their most

significant contribution to social psychology to date (reviewed in Jara-Ettinger 2019).

Decades earlier, however, the seeds of this development were planted by Heider and

Simmel (1944) , who vividly demonstrated how limited sensory data automatically prompts

people to impute rich mental states—in their case, motives, beliefs, and emotions that one

cannot help but read into the movements of geometric shapes acting out a brief morality

play in a jerky stop-action film. The goals, beliefs, personalities, and morals of the geometric

shapes are not literally present on the screen, but people naturally infer these mental states

in order to make sense of their actions.

The process of imputing mental states based on observed actions was first formalized

as Bayesian inference in a seminal paper by Baker, Saxe and Tenenbaum (2009). Following

much prior work, they proposed that the näıve theory of mind that we use to understand

others’ thoughts and actions is built around a causal model of a goal-directed rational actor.

Thus, one can infer a person’s unobserved goal from observations of their actions and their

environment:
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LEVELS OF ANALYSIS: MARR AND TINBERGEN

Marr (1982) and Tinbergen (1963) each made their most important contributions to the behavioral sciences

by helping us to understand what it means to explain a behavior. Both argued that a complete explanation

of behavior requires multiple, complementary levels of analysis including both a description of the function

of the system that produced the behavior as well as its mechanistic details.

Marr described three levels of analysis for cognitive systems. At the computational level, one seeks to

define the problem a system is designed to solve and the idealized form of its solution: One that is abstract,

and often “optimal” or “rational”. For instance, at the computational level, the visual system could be

considered to solve (among others) the problem of inferring a three-dimensional representation of space

given a two-dimensional projection of light on the retina. Bayesian methods abstract the idealized form of

this inference problem. As such, they help us to understand the function of the visual system even if they do

not describe the particular algorithm that the humans use. Marr distinguished this level of analysis from the

“algorithmic” level, which corresponds to the actual computations performed by the cognitive system, and

the “implementation” level, which corresponds to the biological mechanisms that instantiate the algorithm.

Tinbergen studied animal behavior through the lens of evolutionary theory. He proposed that a complete

description of an animal’s behavior required an “ultimate” explanation of the adaptive function of that

behavior (i.e., its fitness value and evolutionary history), along with a “proximate” explanation of the

specific biological mechanism that produced the behavior and its development across the lifespan. Broadly,

Tinbergen’s adaptive level of analysis and Marr’s computational level share a concern with functional design,

while Tinbergen’s mechanistic level of analysis and Marr’s algorithmic and implementation levels share a

concern with the specific causal processes that produce behavior within an individual.

P (Goal | Actions, Environment) ∝ P (Actions | Goal, Environment)P (Goal | Environment)

2.

In a series of experiments, participants viewed a schematic illustration of a person

beginning to walk towards one of several locations, navigating around various obstacles. As

the walker’s path unfolded, participants were asked to infer their goal. These inferences were

elegantly captured by the model’s predictions. Subsequent work extended this framework to

model inferences about beliefs by setting up an environment in which the depicted people’s

views of goals could be obscured, and modeling the relationship between perception, belief,

and planning (Baker et al. 2017).

This model has been further extended to capture a wide array of phenomena of central

interest in social psychology (for review, see FeldmanHall & Shenhav 2019; Jara-Ettinger

2019). For instance, just as Bayesian methods can be used to model how people infer beliefs

and desires, they can also be used to model how people infer peoples emotional states (Saxe

& Houlihan 2017; Ong et al. 2019), the utilities that people assign to objects and even to

each other (Jara-Ettinger et al. 2016; Gates et al. 2021; Liu et al. 2017), and underlying

dispositional traits such as friendless, trustworthiness, etc. (Kim et al. 2020; Cushman &

Macindoe 2009; Diaconescu et al. 2014, 2017; Shin & Niv 2021). For this reason, Bayesian

models of mental state inference are particularly indispensable to computational models of

human moral judgment (Jara-Ettinger et al. 2015; Yu et al. 2019; Siegel et al. 2018; Crockett

et al. 2021; Kleiman-Weiner et al. 2015, 2017). After all, when making moral judgments,
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people are exquisitely sensitive to others’ mental states: their intentions, beliefs, motives,

traits, etc. (Cushman 2008; Young et al. 2007; Uhlmann et al. 2015). Since these cannot

be directly observed, they must be inferred.

Bayesian accounts of mental state inference are also central to many formal models

of social learning (reviewed in Gweon 2021). Often we can learn best from somebody by

focusing not on the literal form or meaning, but instead by asking what it reveals about

them: The message they intended to send, or perhaps the message they intended to conceal.

A classic case is figurative speech: Our ability to infer that, when someone steps out into

miserable weather and says, “Oh I just love a surprise hailstorm”, their intended meaning

is precisely the opposite (Goodman & Frank 2016). Similarly, Bayesian models have been

used to explain how people infer general moral principles from patterns of praise and blame

(Nichols 2021; Ho et al. 2017), how people learn concepts from others’ examples (Shafto

et al. 2014), and how people learn complex tasks from demonstrations (Ho et al. 2021).

They have also been used to explain how we can integrate our own evidence with the

imperfect advice of potentially fallible others (Vélez & Gweon 2019). Finally, Bayesian

models can capture not just how we learn, but also how we teach (Vélez et al. 2023).

Effective teachers sometimes use theory of mind recursively, anticipating how learners will

use their own theory of mind to guess at the teachers’ communicative intent (Goodman &

Frank 2016; Ho et al. 2019, 2021; Shafto et al. 2014). Thus, for instance, a savvy speaker

anticipates when a listener will pick up on her irony; a savvy partner anticipates when “the

silent treatment” will be appropriately understood as a sanction; and so on. This recursive

embedding of theory of mind (“I know that she’ll think that I meant...”) is essential to

both successful collaboration and strategic competition (Kleiman-Weiner et al. 2016; Shum

et al. 2019).

2.3. Bayesian inference beyond theory of mind

Bayesian models have also been used by social psychologists beyond the specific case of

theory of mind. For instance, they can be used to adjudicate putative cases of motivated

reasoning–i.e., drawing inferences that are not justified by the data because they have some

hedonic or practical value. After all, some apparent cases of motivated reasoning may

be explained by perfectly rational processes (Kunda 1990). For instance, suppose that

you judge a stranger harshly when they act rudely, but judge your best friend leniently

given the very same behavior. Does this show a bias in favor of your friend? Perhaps,

but another possible explanation is that you simply have a great deal more preexisting

evidence favoring the hypothesis that your friend is well-mannered, as compared with the

stranger (i.e., different priors). Bayesian models offer a useful tool to formalize and test the

various possibilities. By measuring peoples’ priors, along with other well-specified decision

variables, these methods allow us to quantitatively assess whether reasoning is biased. In

cases ranging from trait attribution (Kim et al. 2020; Park et al. 2021) to stereotypes (Cao

et al. 2019, 2017) to political beliefs (Tappin et al. 2020), formal models have helped to

clearly identify cases that do, and do not, implicate motivated reasoning.

Another foundational construct in social psychology is the group. As a practical matter,

however, group boundaries can be hard to define, are constantly shifting, and may not be

overt. How, then, do ordinary people discover and define social groups? One potential

answer is on the basis of homophily, the tendency of people with similar tastes, interests,

values, and beliefs to form friendships and alliances. Bayesian models of structure learning
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have been fruitfully applied to this problem, providing an impressive match to experimental

evidence on how ordinary people infer group boundaries and membership (Gershman et al.

2017; Lau et al. 2018).

2.4. Why Bayes, and why not?

It is remarkable that seemingly disparate facets of social thought can be systematically

related within a single formal framework. At first blush, it is not apparent that there would

be a common computational core to the psychological processes of attributing beliefs and

goals, understanding irony, diagnosing motivated reasoning, and discovering the structure

of social groups—let alone the structure of visual perception, reconstructive memory, and

so on. In fact, these processes are so distinct that it raises the question,“Exactly what

is shared, and how do we account for their evident differences?” It is a strength of the

Bayesian framework—one shared with all formal models—that it can tell us precisely where

the similarities and dissimilarities between cognitive mechanisms arise.

Let us begin with the dissimilarities. Bayesian inference depends on a causal model that

links latent, unobserved variables to observed data, furnishing the likelihood p(d | h). The

causal model is domain specific, and there is no reason to expect substantive similarities

Domain specific: A
representation or
computation that is

specific to one
aspect of thought, or

one type of problem.

For instance, our
“theory of mind” is

a domain-specific

causal model linking
perception, thought,

feeling, and action.

between, say, the causal model of optics that links objects to their projections on the retina

and the causal model of rational actors who pursue ice cream when hungry.

Yet, there is an important abstract relationship between visual perception and mental

state inference: In both cases we can use a domain specific causal model in order to infer

from data we do observe the most likely explanations in terms of variables that we do not.

Apprehending this shared structure is, curiously, quite helpful when we are forced to

confront one of the most distinctive limitations of the Bayesian approach: Its computational

cost. Except in special cases, the computations involved in exact Bayesian inference are

prohibitively demanding. Much work focuses on finding computationally efficient approxi-

mations. As these are discovered, they can be propagated across models of highly diverse

cognitive domains due to the recognition of their shared abstract structure. Indeed, because

Bayesian methods are used for statistical and AI applications outside of psychology, there

is also a fertile exchange of methods across fields (Ruiz-Serra & Harré 2023).

Of course, there are also alternatives to Bayesian inference that allow us to form beliefs

that go beyond the immediate data we perceive, often in ways that are especially compu-

tationally efficient. For instance, even without inferring others’ mental states we can learn

from them by simply copying what they do, or by other heuristics (Najar et al. 2020; Wu

et al. 2022). And, we can predict peoples’ mental states using statistical approaches that

do not depend on a causal generative model (Tamir & Thornton 2018; Rabinowitz et al.

2018). A key area for future research is to further specify general formal frameworks for

non-Bayesian inference, along with models that explain which kinds of inference procedures

are favored in which situations (Ho et al. 2022b).

3. ATTRIBUTION

Inference helps us to establish the facts of a situation. But, even when they agree on facts,

people may disagree on matters of responsibility. For instance, suppose that each morning

at the bakery Alice is supposed to mix the dough, Betty is supposed to start the ovens, and

Carl is supposed to sweep the floor. This morning it snows, and Alice arrives too late to mix

8 Cushman



RESOURCE RATIONALITY

Many computational cognitive models reside at Marr’s (1982) computational level of analysis, describing

an idealized solution to the general problem that a cognitive mechanism is designed to solve. This is the

case for most Bayesian models of inference, some models of value-guided decision making, and most game

theoretic models of multi-agent decision-making. Often, however, tremendous time and computational

effort would be required to implement these idealized models exactly. A well-designed cognitive system will

substitute less computationally demanding approximations and heuristics in place of the idealized solutions

to various problems (Simon 1956). This idea animates “dual process” models of cognition (Kahneman 2011).

Over the past several decades, considerable progress has been made in showing how apparent deviations from

idealized models can be understood as sensible exchanges for cognitive efficiency (e.g. Todd & Gigerenzer

2000; Bhui et al. 2021). Increasingly, researchers have begun to formalize the very problem of accuracy/effort

trade-offs in computationally precise terms so as to derive the optimal design of cognitive systems operating

under resource constraint. This style of model is often termed “resource rational”. (Lieder & Griffiths 2020).

the dough. Betty and Carl get their jobs done on time, but the bread is not ready by 9am.

Who is responsible? Alice, for being late? The snow, rendering Alice blameless? Carl, for

not stepping in to mix the dough after a quick sweep? The answers to these questions are

not unknown facts that we can infer, but subjective attributions that we make, given those

facts.

Social psychologists have devoted great attention to distinguishing the different kinds

of attributions that people make, and to detailing the processes by which we make them

(Heider 1958; Kelley 1973; Weiner 1995). Two of the most important attributions are those

of causal responsibility and moral responsibility. They govern how we assign responsibility

to people versus situations (Ross 1977), how we distribute credit and blame (Weiner 1995),

and how we explain complex events to ourselves and others (Lombrozo 2010).

3.1. The attribution of causal responsibility

How do we determine that one event is causally responsible for another? Famously, Michotte

(2017) observed that sometimes causal attribution is grounded in perception, such as one

when billiard ball strikes another. Perceptual processes cannot, however, account for the

kinds of attributions of greatest interest to social psychologists: that the launch of Sputnik

caused the space race, heartbreak caused Romeo’s suicide, or rehiring Steve Jobs saved

Apple from oblivion.

Rather, our best formal models of these sorts of causal judgments depend on coun-

terfactual assessments: Roughly, asking, “If somebody had changed X, would Y still have

happened?”. Thus, for instance, we conclude that Steve Jobs saved Apple from oblivion

because we are able to use a causal generative model to consider what would have hap-

pened to Apple without Steve Jobs, and the answer is “oblivion”. Causal attributions for

physical systems often depend on counterfactual reasoning (Gerstenberg et al. 2021), but

evidence suggests that it is particularly important when reasoning about humans’ inten-

tional actions (Lombrozo 2010). These psychological accounts of causal attribution build

directly on seminal work in philosophy (Lewis 2013) and mathematics (Pearl 2009).

Counterfactual: A
specification of a

causal model in
which one intervenes
on one or more

variables and then
adjusts causally

downstream

consequences as
necessary.
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Counterfactual models of causal attribution also share several features with the Bayesian

framework described above: Both posit that people represent and reason over causal gener-

ative models, and both provide a natural explanation for the probabilistic format of these

reasoning processes. Bayesian inference and counterfactual reasoning are, however, quite

distinct computations performed over this common representational substrate.

Although counterfactual judgments are crucial to causal attribution, however, they do

not provide a sufficient account by themselves (Hitchcock & Knobe 2009). A moment’s

reflection reveals that a simple, pure counterfactual test (“would the effect have happened

without the cause?”) is not a very good model for how we ordinarily talk about causal

responsibility. To choose just one illustrative example, suppose that somebody wins a

lottery because they were able to (1) name Disney’s mouse mascot (“Mickey”) and (2) guess

a secret number between 1 and 1,000,000 (“355,449”). Both (1) and (2) were necessary for

the win (as our causal model informs us) but, intuitively, it feels like (2) is what really

caused the win.

Kelley’s (1973) covariation model was perhaps the first formal treatment of this phe-

nomenon, along with several related quirks of causal attribution. Kelly proposed that people

attribute responsibility to events that tend to covary with an observed outcome. (For in-

stance, naming Mickey Mouse will not be correlated with winning the lottery described

above, but guessing the correct number will). A recent formal model pursuing a broadly

similar approach can indeed capture nuanced patterns of responsibility judgments (Quillien

& Lucas 2022).

A key issue for future research is to determine how these sorts of statistical models can

be integrated with, or explained by, models of causal attribution built around the machinery

of couterfactual reasoning. Several such models have been developed in recent years, and

with promising results (Icard et al. 2017; Morris et al. 2018; Halpern & Hitchcock 2015). In

parallel, there has been a burst of activity exploring the rational basis of causal attribution:

In other words why, at the “computational” (Marr 1982) or “ultimate” (Tinbergen 1963)

level of analysis, do we attribute causation the specific sorts of things we do? Several related

proposals center on the idea that attributing causes to past events eventually guides our

selection of promising future interventions (Morris et al. 2018; Hitchcock & Knobe 2009;

Lombrozo 2010; Vasilyeva et al. 2018).

3.2. The attribution of moral responsibility

In at least two ways, the attribution of moral responsibility is intimately linked to the

attribution of causal responsibility. First, moral judgment—especially judgments of blame

and punishment—often depend on attributions of causal responsibility for harm (Cushman

2008). In other words, if you are judged to have harmed somebody then, all else being

equal, you are likely to receive greater blame and punishment.

The second connection, while less obvious, exerts even more influence. We blame people

for the harm they cause, but also—and especially—for the harm they intend. Now, it might

seem quite natural to suppose that when we judge a person to have harmed intentionally,

this is just a straightforward matter of mental state inference—i.e., a problem to be solved

by the Bayesian methods discussed in the prior section, rather than anything to do with

causal attribution. Recall, however, that our intuitive understanding of others’ mental

states is a domain-specific causal model linking perception, thought, and action. Motivated

by this observation, several recent formal models propose that what we mean when we say
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that a person has caused an event “intentionally”, is that we attribute causal responsibility

for their action to their preferences (Quillien & German 2021; Halpern & Kleiman-Weiner

2018; Kleiman-Weiner et al. 2015). That is, intentionality judgments depend in part on

the counterfactual claim, “if this person had different preferences, they wouldn’t have done

that.” In a broadly similar spirit, recent work suggests that our ordinary notion of free will

(typically a requirement for full moral responsibility) depends upon domain-specific causal

attributions of action to thought (Knobe & Nichols 2011; Martin & Cushman 2016). Thus,

the mental states that we use to describe and explain others’ behaviors—and, crucially, to

morally evaluate it—are a product not just of causal inference, but also of causal attribution.

Over the past fifteen years several theorists have made preliminary attempts to assemble

formal models of the attribution of moral responsibility in humans (Halpern & Kleiman-

Weiner 2018; Kleiman-Weiner et al. 2015; Mikhail 2007; Sosa et al. 2021), often drawing

inspiration from well-specified but ultimately more qualitative models (Malle et al. 2014;

Alicke 2000; Weiner 1995). In one way or another, most of these integrate both forms of

causal attribution described above: A broad causal connection between a person and a

harmful outcome, together with a much more specific causal connection between certain

mental states and action. But there is an additional ingredient to these models of moral

judgment that we have not yet discussed, and to which we will turn our attention next:

Value.

4. VALUE-BASED LEARNING AND DECISION-MAKING

No class of computational model has attracted greater attention from social psychologists

than value-guided decision-making (Ruff & Fehr 2014; Rilling & Sanfey 2011). These models

describe a particular method of action selection; that is, of determining which actions to

perform when. Of course, people have many ways of choosing actions without representing

their value. For instance, innate reflexes and instincts sometimes map from stimuli to the

appropriate action (e.g., withdrawing from a precipice), but without representing value. We

might also copy others’ behaviors without representing their value. Or, we might repeat

actions we’ve performed in the past, or actions that have been rewarded, without storing

any representation of their expected value. Each of these mechanisms for action selection

enjoys empirical support (as do others), and several of them have been elegantly formalized.

This review focuses on value-based methods of action selection because they have been the

most intensively studied and, to date, the most productive formal models employed by

social psychologists.

4.1. Reward and value

A recurring idea across many fields—economics, computer science, psychology, neuroscience,

and more—is that agents can represent objectives on a continuous numerical scale, such

as utility, reward, or value. This idea can be formalized in different ways. Here, I use the

term “reward” to mean a real number assigned to some state of affairs (e.g., “eating a

Reward: A
numerical objective
assigned to states of

affairs, or features of

them, that an agent
seeks to maximize.

Value: T
he long-run expected
reward associated
with performing

some action1.

great salad” = 7) or features of it (e.g., “arugula” = 1; “sharp vinaigrette” = 3; “candied

pecans” = 3, etc.). In order to obtain reward an agent can take various actions, and the

expected long-run reward of an action (given an expected series of further actions) is its

“value”. Thus, when engaged in value-based decision-making, the goal of an agent is to

estimate the values of the available actions and to then choose the highest.
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Put somewhat differently, rewards are intrinsic (a special class of things we want “for

themselves”) whereas value is instrumental (anything could be valuable, but only insofar

as it eventually brings reward). To illustrate this idea in the simple “bandit” setting where

the task is to choose just one action, suppose than an agent faces a number of actions

a1, a2 . . . an each of which probabilistically transitions to states s1, s2 . . . sm, with reward

given by R(s). Then, the value Qa of each action is an average of the rewards of its potential

consequences, weighted by their probabilities of occurring given a:

Qai =

m∑
j=1

R(sj)p(sj | ai), 3.

and the agent should choose the value-maximizing action argmaxi V (ai). This is the basic

intuition behind expected utility theory, an important foundation of much work in economics

and psychology. The simplicity with which this normative standard can be expressed,

however, belies the complexity of actually computing it—especially in cases of sequential

or multi-agent action selection. Much work on value-guided decision-making consists in

determining how people estimate the value of actions in a computationally efficient manner.

4.1.1. Social reward and social value. Perhaps because expected utility theory rose to

prominence in economics, rather than psychology, it was sometimes implicitly assumed

that rewards are purely self-interested in the narrowest sense: the food one eats, the money

one earns, the social approbation one craves, and so on. Of course nobody ever suggested

that people fail to act in ways that benefit others—people obviously do each other favors,

give each other gifts, pay each other complements, and so on. Rather, it was sometimes

implicitly assumed that people perform these apparently generous actions not because they

provide us with intrinsic reward, but instead because they are instrumentally valuable.

That is, we do nice things for other people just because eventually it helps us eat, earn,

and bask in glory.

Against this background, several decades of behavior studies have been devoted to

demonstrating that people experience a variety of social events and outcomes as intrinsically

rewarding: Fairness (Fehr & Schmidt 1999), giving (Andreoni 1990; Crumpler & Grossman

2008), reciprocity (Rabin 1993), revenge (Carlsmith et al. 2002; Morris et al. 2017) and

norm enforcement (Fehr & Gächter 2002; Fehr & Fischbacher 2004), conformity to norms

(Capraro & Rand 2018), and much more. The standard experimental approach is to devise

an experiment (usually in a laboratory and for monetary stakes) in which a person has

the opportunity to pay a cost to attain the good in question (fairness, revenge, etc.), but

with the knowledge that their behavior will be anonymous and the interaction “one shot”.

This removes any possibility of recouping their losses, and indicates that the value of their

behavior must be derived from an intrinsic sense of reward.

This logic is compelling if we assume that peoples’ behaviors in the experiments are

derived from representations of value. But, as we have already noted, there are other kinds

of psychological mechanisms that might explain their behavior without any representation

of value: They might be behaving reflexively, or recapitulating social scripts or norms, or

repeating the sorts of behaviors they’ve performed in the past, etc., without computing the

expected value of candidate actions and choosing between them on that basis. A crucial

complementary piece of evidence comes from cognitive neuroscience. In case after case,

the neural systems and neural signatures associated with social decision-making turn out

to be the very same ones that have long been associated with value-based decision-making
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more generally (reviewed in Ruff & Fehr 2014; Rilling & Sanfey 2011). Decades of work

have shown how neural populations within the striatum, ventromedial prefrontal cortex,

orbitofrontal cortex, and elsewhere implement a well-characterized set of computations in

order to estimate the value of objects, states, and actions in order to guide choice (reviewed

in Rangel et al. 2008). And, these very same circuits are involved in making decisions about

fairness (Sanfey et al. 2003; Hsu et al. 2008), giving (Zaki & Mitchell 2011), reciprocity

(Phan et al. 2010; Van den Bos et al. 2009), punishment (Treadway et al. 2014; Sanfey

et al. 2003), spite (Cikara et al. 2011), conformity (Zaki et al. 2011; Izuma & Adolphs

2013), reputation (Izuma et al. 2008) and much more. Taken together, then, the neural

evidence suggests that value-based mechanisms play a key role in social decision-making,

while behavioral studies indicate that this is often because we assign intrinsic rewards to

social actions and events.

Of course, there are also many instances in which our social behavior is guided by

instrumental reasoning—where we strategically derive the value of actions, states, or even

people, by considering their implications for our own “self-interested” rewards. For instance,

we assign value to generous actions strategically based upon how others will perceive them

(Izuma et al. 2010; van Baar et al. 2019). We also assign value to individuals based on their

propensity to act generously towards ourselves and others (Behrens et al. 2008; Hackel et al.

2015).

In retrospect, it should not be surprising that people experience social rewards and as-

sign social values, or that these rely on common computational schemes and, in many cases,

common neural substrates with non social rewards and values. Nevertheless, this fact has

driven tremendous progress in modeling the computational basis of social decision-making.

After all, the study of value-guided decision-making has been one of the great success sto-

ries in human behavioral research—a rare instance where computational, behavioral , and

neural studies have converged on a common core set of models.

4.2. Estimating value: Learning and planning

In many cases it can be extremely challenging to estimate the value of an action. Consider,

for instance, the problem of choosing a chess move. Although reward is well-defined in this

setting (checkmate), determining which actions are most likely to bring about that reward

is difficult to compute. Part of the problem is to model the other player, which we consider

in the following section on multi-agent decision-making and game theory. Here, we focus

on another part of the problem, essential to what is sometimes called the “reinforcement

learning” (RL) problem (Sutton & Barto 2018), which is to choose adaptive sequences of

behavior. In computer science, neuroscience, and psychology, considerable progress has

Reinforcement
learning: A
family of methods

that select sequences
of actions by

estimating their

values.

been made in understanding the different sorts of strategies one can use to estimate value in

sequential settings. These are playing an increasingly prominent role in social psychology.

4.2.1. Model-based versus model-free methods. Upon first thought, it might seem straight-

forward to estimate the value of an action like a chess move: One merely needs to consider

the resulting position of the board, the probabilities of various moves by the opponent, the

probabilities of your replies, and so on, until each imagined chain ends in checkmate. This is

often called planning, and it is an example of a “model-based” method of value estimation,

because it depends on one’s probabilistic causal model of how various actions are related

to subsequent states. In this case, the model both involves knowledge of the (relatively
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simple) rules of chess, and also knowledge of the (relatively complicated) decision-making

processes of one’s opponent (i.e., precisely the kind of causal model discussed in Section 2:

A model of the rational actor). But, the same basic computation can be employed for any

decision problem for which you have a causal model: choosing a path based on a model of

the terrain; choosing a repair based on a model of one’s bicycle; choosing a house based

on a model of one’s future needs; etc. For a computationally unbounded agent, model

based methods can provide an optimal approach to value estimation. In practice, however,

they are often prohibitively computationally demanding. Thus, a growing body of research

suggests that humans engage in planning over simplified task models (Ho et al. 2022a), lim-

ited time horizons (Keramati et al. 2016), restricted sets of goals or options (Morris et al.

2021; Cushman & Morris 2015), or in other ways designed to make the planning problem

tractable.

Model-based: M
ethods of estimating

value that draw on a

causal model linking
actions to outcomes,

such as planning.

Model-free: M
ethods of estimating

value without

drawing on a causal
model, such as

generalizing from

past experience.

An alternative way to estimate the value of an action is according to its history of past

reward. For instance, the value of a particular chess move in the present game could be

approximated by tallying the proportion of times it was a winning move in prior games.

This does not require building or querying a causal model of chess games, but instead

keeping statistics on past performance. It is an example of a “model-free” method of value

estimation. An especially efficient and powerful model-free method, temporal difference

learning (Watkins & Dayan 1992; Sutton 1988), exploits an idea closely related to the

“secondary reinforcer” (i.e., an event that is treated as rewarding not because it carries

intrinsic reward, but because it has historically predicted subsequent rewards). Each time

one takes an action, one updates the learned value of that action by adjusting it in the

direction of two quantities, summed: the immediate rewards one experiences in the next

state, and one’s estimate of the value of the next action one will take in that new state.

This method efficiently “passes back” information about expected future rewards through

a simple update rule over the course of repeated trial-and-error experience.

Early model-free algorithms required that agents gradually improve their estimates of

the value of various actions only given experience with precisely those actions in precisely

those states. Yet there is some sense in which people actually never encounter precisely

the same state twice—and, in any event, a more efficient approach is to generalize across

experience based on the overall similarity between the current action and state and previous

ones that have been encountered. This approach is common to many “deep RL” methods

employed in contemporary AI architectures, where a deep neural net approximates a value

function defined over states and actions through statistical generalization (e.g. Silver et al.

2017). In architectures of this kind, the process of generalization is generally model-free.

Compared with model-based methods, model-free methods tend to require greater quan-

tities of training and do not make optimal use of evidence, so they tend to perform less

accurately. Their advantage, however, is computational efficiency at decision time. Whereas

model-based planning requires an agent to prospect over a potentially large and lengthy set

of subsequent states and actions, model-free methods typically require simple lookup of a

precompiled (or “cached”) representation of value, or a simple query of a precompiled value

function.

There is a long and productive tradition of “dual process” models in social psychology,

as well as in judgment and decision-making, cognitive psychology, and behavioral economics

(Kahneman 2011; Sloman 1996). Broadly speaking, these models posit that we can accom-

plish many tasks either by devoting conscious, effortful and controlled cognitive processes

to deriving a more accurate solution, or instead by relying on unconscious, effortless and
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automatic processes that deliver less accurate approximations. The distinction between

model-free and model-based RL offers one of the most compelling and useful computational

formalizations of this basic idea, albeit just for the one psychological domain of value-guided

decision-making.

For instance, the dual process model of moral judgment posits that we have an automatic

process of moral judgment that prohibits direct physical harm to others, while we have a

controlled process that endorses whichever action maximizes the long-run welfare of those

we care about (Greene 2008). These processes can conflict in cases like the trolley problem,

where one brings about the greatest long-run welfare by directly harming a person. This

model can be naturally interpreted within the RL framework as a competition between a

model-free process that assigns low value to harming others (because it is usually a bad

choice) and a model-based process that is able to derive the situation-specific high value of

harming others in unusual cases like the trolley problem (Cushman 2013; Crockett 2013).

This formalization of the dual process of morality clarified its relationship to other work

on value-guided decision-making, while also generating a host of new predictions that have

begun to receive empirical support (Patil et al. 2021; Lockwood et al. 2020; Maier et al.

2023).

4.2.2. Individual versus social learning methods. Social psychology has much to gain from

models of value-guided decision-making, but the reverse is true as well. One of the strangest

features of the contemporary literature on value-guided decision-making is its overwhelming

focus on individual learning. That is, it is often assumed that people learn about the causal

structure of the world, and the value of actions and states within it, through personal

experience. Yet, surely the cornerstone of humans’ distinctive intelligence is our capacity

to learn from and teach each other (Tomasello 2009). Over the past decade, increasing

attention has been paid to developing formal accounts of the intersection between social

learning and value-based decision-making (Olsson & Phelps 2007; Najar et al. 2020; Vélez

& Gweon 2021; Charpentier et al. 2020; Wu et al. 2022; Morris & Cushman 2018).

A foundational question in the study of human social learning, long recognized by

developmental psychologists and anthropologists, is the extent to which we learn by blindly

imitating others’ successful actions, or instead by developing a causal understanding of

what makes those actions successful and then deriving suitable plans for ourselves given

that knowledge (Boyd et al. 2011; Pinker 2010; Tomasello 2009). These two forms of social

learning can be considered analogous to model-free and model-based methods of individual

learning: in the former one copies one’s own prior successful actions, while in the latter

one learns a causal model and then flexibility plans in future circumstances given this

knowledge (Charpentier et al. 2020). Thus, computational models of value-guided decision-

making offer a powerful and appealing way of organizing theories of social learning (Najar

et al. 2020; Wu et al. 2022; Morris & Cushman 2018).

Several formal models seek to define social learning strategies that combine elements

of Bayesian mental state inference and value-guided decision-making (Charpentier et al.

2020; Najar et al. 2020; Ho et al. 2021, 2019; Thompson et al. 2022). In other words, when

attempting to learn from an expert, it can be helpful to infer the mental states (rewards,

values, and beliefs) that guide their behavior—a classic instance of Bayesian mental state

inference—and then to use those inferred mental states to appropriately adjust and improve

your own rewards, values, and beliefs. And, when teaching, it helps to balance the cognitive

and physical cost of demonstration against the epistemic benefit to the learner (Vélez et al.
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2023) This line of work highlights the appealing compositionality of computational cognitive

models.

4.3. Value-based Choice

So far we have considered how people learn a representation of value. A separate question

is how, given such a representation, a person makes their choice.

4.3.1. Consideration. Many laboratory studies of choice present participants with exactly

two alternatives. But the real world often presents “open-ended” decision problems with

far too many alternatives to explicitly consider them all: Too many meals we could possibly

eat, too many moves in a game of Go, too many things we could do on a Sunday afternoon.

When people face open-ended decisions, a limited set of good candidate options tends

to come readily to mind, often called the “consideration set”. Research in consumer

Consideration set: I
n open-ended
decision problems,

the restricted set of

options, or actions,
subject to

deliberation.

behavior suggests that composition of the consideration set often explains as much or more

about a person’s ultimate choice than the deliberative processes by which they select a final

item from within the consideration set. Recently, considerable progress has been made in

formalizing the processes by which the consideration set is constructed (Morris et al. 2021;

Aka & Bhatia 2021; Zhang et al. 2021; Callaway et al. 2022), focusing both on the role of

semantic associations (e.g. the associability of different foods with “dinner”) and of value

representations (e.g., the value associated with different foods as dinner items).

Although still circumstantial, there is some evidence that social norms—and especially

moral values—guide consideration (Phillips & Cushman 2017; Bernhard et al. 2022; Phillips

et al. 2019; Swidler 1986; Kalkstein et al. 2022). In other words, when choosing our own

actions, the candidates that come naturally to mind are those that others typically perform,

and that do not violate moral norms. For instance, if we are on the way to the airport, our

car breaks down, and we’re out of cash, we tend to consider possibilities like calling a friend

for a ride (common, and morally acceptable) rather than possibilities like calling a cab and

simply not paying for it when we arrive at the airport (uncommon, and morally wrong).

An important direction for future research is to embed this role of social and moral norms

into formal accounts of consideration (Morris & Cushman 2018).

4.3.2. Evidence accumulation. Once a set of candidate actions is under consideration, how

do we deliberate about their relative values? Typically we cannot query a single determin-

istic representation of value, but instead draw “samples” from a generative process. The

more samples we draw, the more accurate our estimate. For instance, if estimating the

value of chess move, we might be able to consider more potential future states of the board;

if estimating the value of a home, we might be able to consider more of its features; if we are

estimating the value of a friendship, the more past episodes we might be able to recall from

memory, and so on. Because we cannot deliberate over the options in our consideration set

forever, however, people often employ a confidence threshold for choice.

A broad class of “accumulator” models provide a formal description of this process

(Ratcliff & Smith 2004). The most popular of these, the drift diffusion model (DDM),

proposes that we sample the relative value of options until we reach a threshold surplus of

samples favoring one of the options. In other words, the DDM tells you not only what to

choose, but also when you’ve devoted enough time and cognitive effort to make a choice with

some degree of certainty. Originally developed to model perceptual tasks (e.g., are most
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of these moving dots going right or left?), it provides an excellent fit to both judgment

and reaction time in many contexts (Krajbich et al. 2010; Fudenberg et al. 2020), and also

presents intriguing parallels to neural data on the choice process (Gold & Shadlen 2007;

Harris & Hutcherson 2022).

Social psychologists have made several productive uses of the DDM. First, it has illumi-

nated specific mechanisms by which social factors affect decision processes. For instance, a

DDM applied to the effect of conformity on moral decision-making shows that it does not to

directly bias people match a particular outcome, but instead to bias their attention to the

choice attributes that align with their peers’ decision-making (Yu et al. 2021). (In contrast,

reward-motivated biases in choice behavior show an influence of both kinds; see Leong et al.

2019). Another shows that peer influence increases impulsivity during decision-making (Son

et al. 2019).

Second, by permitting quantitative modeling of reaction time effects, the DDM has

allowed researchers to question some claims of “dual-process” models based on the obser-

vation that people make certain decisions faster than others. Thus, for instance, although

people may tend to choose unhealthy snacks when deciding quickly and healthy snacks when

taking their time, a DDM indicates that this may simply reflect that they are able to access

information about taste sooner than health, rather than a competition between distinct

automatic and controlled processes (Sullivan et al. 2015). Similarly, evidence that people

make prosocial decisions more quickly than pro-self decisions has been used to argue that

prosocial behavior is generated by automatic psychological processes while pro-self behavior

is generated via controlled deliberation (Rand et al. 2014, 2012). Using a DDM, however,

it has been argued that a similar pattern of data could instead be generated by a single

system (Hutcherson et al. 2015).

Third, researchers have used the DDM to explore how ordinary people draw mental

state inferences based on others’ decision time. For instance, if you ask somebody to marry

you and they take a heartbeat versus a minute to answer, you might draw very different

conclusions about their level of enthusiasm and certainty (Critcher et al. 2013; Pizarro et al.

2003)—potentially the same sorts of conclusions that a computational cognitive scientist

would draw by using a DDM. Indeed, ordinary people’s inferences about others’ preferences

based on reaction time align with the predictions of a “rational” model that uses Bayes’

rule to perform inference over a DDM (Gates et al. 2021).

This final study showcases the compositionality of formal methods: the DDM (devised

for perceptual decisions) can be composed with theories of value guided decision-making,

which can themselves be composed with models of Bayesian inference, to model how people

draw inferences about others values based on reaction time. But, it illustrates how for-

mal models are sometimes best construed as hypotheses about how psychological processes

are implemented (at Marr’s implementation or algorithmic levels), and other times best

construed as hypotheses about how psychological proceses are designed (at Marr’s com-

putational level). When people make value-guided decisions, it seems that they are often

implementing a mechanism very much like the DDM. On the other hand, when people

draw inferences about others’ values based on reaction time, it is quite unlikely that they

are performing exact Bayesian inference over a generative model of the DDM. Neverthe-

less, the same formal tools can help us to understand the design principles underlying their

inference.
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4.3.3. Rationalization. Perhaps peculiarly, the processes of value-guided decision-making

does not end with choice. A classic area of research in social psychology is rationalization:

Our tendency to construct rational explanations of our behavior post-hoc. One of the most

robust empirical findings in this literature is choice-induced preference change: i.e., the

phenomenon that choosing things tends to make us like them more, and failing to choose

them tends to make us like them less (e.g., Brehm 1956; Sharot et al. 2009; Koster et al.

2015). This, of course, turns the standard model of value-guided choice—in which one

chooses something because it is valuable—on its head.

A variety of computational accounts of choice-induced preference change have been

offered at the mechanistic level (e.g. Vinckier et al. 2019; Cockburn et al. 2014). A separate

question arises, however, as to why such a mechanism would be advantageous. What

adaptive purpose is served by having people tend to prefer actions because they chose them,

and not just the other way around? One possibility is that this reflects a process of trying

to achieve coherence between various parts of one’s psychology, including beliefs, values,

and actions (Hornsby & Love 2020; Holyoak & Simon 1999; Shultz & Lepper 1999).

Another, related, possibility is that choice-induced preference change serves the function

of inferring the value of objects given choice. This may be because people do not have in-

trospective access to their choice processes and yet wish to be able to explain their behavior

convincingly (and perhaps flatteringly) to themselves and others (Bem 1972; Von Hippel &

Trivers 2011). It may also be because rationalization of this kind can improve one’s reason-

ing and subsequent decision-making (Cushman 2020). People sometimes perform behaviors

that are not guided by an explicit representation of reward (e.g., instinctual behaviors, con-

formity to social norms, certain habitual actions, etc.), yet which are nevertheless adaptive.

Thus, by inverting a generative model of rational action (along the lines of the Bayesian

models of theory of mind considered in Section 2), an agent can discover what they ought to

find rewarding—for instance, concluding that certain foods are nourishing by rationalizing

innate taste preferences.

5. MULTI-AGENT CHOICE

So far we have addressed value-based decision-making in which a person interacts principally

with their environment, but of course special considerations arise when multiple agents make

choices that influence each other’s behavior and outcomes.

There is a long history of using formal models to explain how people influence each

other’s behavior. For instance, following Asch’s (1955) seminal characterization of the

interplay of individual judgment and conformity, the Bass diffusion model successfully for-

malized how consumers’ adoption of new products are influenced by conformity (Bass 1969).

In quite a different domain, Coleman & James (1961) provided a computational analysis

of the expected size of crowds based on their inflows and outflows, which Milgram et al.

(1969) assessed against experimental data. A particularly influential model due to Schelling

(1971) shows how even small preferences to live a low threshold of people similar to us, once

aggregated and played out over time, can result in a profoundly segregated population.

Each of these models draws powerful, abstract insights from simple grounding assump-

tions. Yet, each is grounded in a rather ad hoc setup, which restricts their compositional

potential. What follows is a selective review of game-theoretic approaches to multi-agent

behavior as class of models that compose naturally with the other formal frameworks we

have reviewed (i.e., Bayesian inference and value-based decision-making).
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5.1. Game theory

Game theory models multi-agent interactions by drawing on two foundational ideas that

we have already encountered. First, it assumes that people make rational decisions aimed

at maximizing value—a claim about decision-making. Second, it assumes that they model

others as rational value-maximizers as well—a claim about inference and prediction.

One of the most essential ideas arising from this formal approach is the “equilibrium”: a

set of strategies (one for each player in the game) which, when simultaneously implemented,

prevent any player from improving their expected payoff unilaterally2. For instance, if

Equilibrium: A
set of strategies,

implemented in a

multi-agent game,
such that no single

agent can

unilaterally improve
their expected payoff

by changing their

strategy.we regard driving as a game, one equilibrium is for all drivers to always drive on their

right-hand side of the road, and another equilibrium is for all drivers to always drive on

their left-hand side. In either case, nobody can do better by changing their behavior alone.

In contrast, the strategy “drive on the right with 70% probability” is not an equilibrium:

if everybody behaved this way, anybody could improve their payoff by driving on the right

side more often (thus reducing their probability of an accident). Rational actors would do

so, bringing the population in line with one of its true equilibria: Everyone driving on the

right. This is what makes the equilibrium a powerful concept: it predicts which behaviors

we should tend to observe in multi-agent interactions, and explains why.

In many different areas of interest to social psychologists, the kinds of behaviors that

we observe in the real world can be elegantly explained as equilibrium solutions to simple

games. This is in part because many different adaptive processes are all predicted to con-

verge to equilibria: Model-based reasoning (e.g. Nash 1951), model-free reinforcement (e.g.

Littman 2001), natural selection operating on genetically inherited behavior (e.g. Smith &

Price 1973), and cultural selection operating on socially learned behavior (e.g. Boyd & Rich-

erson 1988). Thus, game theory can organize our understanding of human interaction even

without specifying the precise mechanisms involved. Of course, as such, this relegates many

applications of game theory to a position at Marr’s (1982) computational, or Tinbergen’s

(1963) adaptive, level of analysis.

5.1.1. Signaling. Many game theoretic models ask when communication is reliable: In other

words, when people will speak honestly, and trust what they hear. It has been long been

recognized that costly signals might be used to establish trust. Veblen (1889) posited, for

instance, that the rich could “burn money” on objects (or time, on activities) with little

utility in order to send a credible signal of their resources and power. What makes the

signal credible, on this analysis, is that a poor person would not rationally choose to pay

it. This intuition was later formalized in a series of game theoretic models outlining the

conditions in which costly signals can establish successful communication, the conditions

under which costs are not necessary, and the conditions under which dishonesty proliferates

despite costs (Grafen 1990; Smith 1994, 1991).

Costly signals can be used to establish more than just one’s wealth and power, of

course. For instance, they can signal one’s commitment as a romantic partner (Zahavi

1975), such as when a person pays for an expensive meal on a date. Or, they can be used

to signal the importance of a ritual or cultural practice, such as when extravagant expenses

are thrown to observe holidays or honor gods (Henrich 2009). And, in one of the best-

2There are numerous different equilibrium concepts that are important to game theory; this
statement is meant to capture their shared foundation.
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explored examples, they can be used to signal one’s value as a cooperative partner (Gintis

et al. 2001). That is, by engaging in particularly costly acts of cooperation or altruism,

one can send an honest and reliable signal of the importance of one’s moral reputation

and, by extension, social relationships. Remarkably, formal analysis shows that one can

send precisely the same kind of signal of trustworthiness as a social partner by engaging in

costly third-party punishment of norm violators, and empirical data suggest this is in fact

an important motivation for third-party punishment in some cases (Jordan et al. 2016a).

Taken together, these models have been used to explain phenomena like virtue signaling

and competitive altruism (Roberts 1998; Barclay & Willer 2007; Kraft-Todd et al. 2020).

5.1.2. Emotion, intuition, and commitment. In some games, paradoxically, we can achieve

our best outcomes by committing ourselves to irrational behavior. The classic example is

the doctrine of mutual assured destruction in nuclear war, a strategic setting formalized

as a game by Schelling (1960). Although it may be irrational to launch a counter-strike

once one’s destruction is already assured, pre-committing to the counter-strike can act as

an important deterrent against would-be aggressors. In other words, by committing to

irrational retaliation, one can rationally prevent an initial attack. Similarly, when people

possess valuable resources that can easily be stolen—perhaps cattle, drugs, or clients—it

can be strategically beneficial for them to advertise an “irrational” commitment to massive

retaliation against anybody who threatens those resources. Certain moral emotions such as

a sense of “honor”, or vengeance, are suggested to accomplish this function (Frank 1988):

When we exhibit these emotions, we send a credible signal to people around us that we

will retaliate against any offense, and even at great personal cost. This deters would-be

offenders. This logic is essential to the standard anthropological and social-psychological

analysis of honor cultures, such as the herders and ranchers of the American South and

West (Nisbett 2018), and elsewhere (Cao et al. 2021).

Frank (1988) argued that many emotions, not just anger and revenge, could be ana-

lyzed as commitment devices. He proposed that romantic love, for instance, plays the role

of “irrationally” committing us to fidelity which, in turn, enables the profitable institution

of highly trusting long-term romantic relationships. Similar arguments, grounded in game

theory, have been applied to a variety of other emotions and other inflexible, evolved mo-

tivational systems such as intuitions and social rewards (Hoffman et al. 2015; Jordan et al.

2016b; Bear & Rand 2016; Morris et al. 2017; Bernhard & Cushman 2022).

5.1.3. Fairness: Bargaining and coordination. One of the earliest and most successful appli-

cations of game theory was to cooperative bargaining (Nash 1950): A situation in which two

people can achieve mutual benefit by working together to create value, as long as they can

strike a deal over how to divide the profits. This kind of human interaction is ubiquitous:

Our relationships with employers, romantic partners, friends, businesses, neighborhood as-

sociations, and so forth, all involve collaborations in which people work together for mutual

benefit, and must find a way to share the profits. Formal analysis shows that rational agents

will tend to divide profits by assigning the greater share to an individual with superior “out-

side options”—i.e., the person who does better if no deal is struck. In large social markets,

however—i.e., situations in which there are many potential social partners with whom a

person might interact, and thus a wealth of outside options for all—rational agents will

tend to offer an even (50/50) division of resources in order to maintain their competitive

value as a social partner (André & Baumard 2011). This has been proposed to account for
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a broad array of human moral norms, especially concerning distributive justice (Baumard

et al. 2013; Binmore 2005; Le Pargneux et al. 2023).

In real-world contexts, however, coordinating our behavior in order to achieve mutual

benefit can be challenging. Consider the mundane complexity of a married couple sorting

out who will handle various household tasks: shopping, cooking, cleaning, home mainte-

nance, pet walking, childcare, and so on. In these contexts, coordination can become more

efficient and reliable by resorting to conventionalized social roles, such as gendered expecta-

tions, but at the price of inequality. Formal analysis shows that not just our intuitions about

fairness, but also the persistence of unfairness, can be elegantly captured in the language

of game theory (O’Connor 2019).

5.1.4. Reciprocity. No facet of human sociality has been more extensively modeled as games

than reciprocity in social dilemmas: Our tendency to cooperate with those who are also co-

operative, and to withhold cooperation (or otherwise punish) those who are not. In games

like the two-player Prisoner’s Dilemma (PD) individuals maximize their immediate payoff

by withholding cooperation, but achieve a higher payoff through mutual cooperation than

through mutual defection—hence the “dilemma”. Classic formal models (Trivers 1971) and

agent-based simulations (Axelrod & Hamilton 1981) showed that in certain repeated PDs,

however, cooperation can emerge from an equilibrium in which each player cooperates only

with those who have previously been cooperative. Subsequent work revealed additional

equilibria that explain, for instance, why people cooperate with those who have a cooper-

ative reputation, or why especially strong cooperative norms might be maintained within

(but not between) small, close-knit groups that compete (Nowak 2006).

Many human emotions scaffold reciprocity in social dilemmas (Sznycer 2019; Chang &

Smith 2015). When people act less cooperatively than expected we feel anger and resent-

ment (Sell 2011; Sell et al. 2017). Meanwhile, when we detect the anger and resentment of

others we are often motivated to make amends (Sznycer et al. 2016; Chang et al. 2011). Of-

ten, in order to adequately model the structure of human moral emotions in game theoretic

terms, one must explicitly model each player’s beliefs about the other player, including their

beliefs about the other players’ knowledge or intentions (Rabin 1993; Chang et al. 2011).

The method of integrating models of mental state inference (such as those described in Sec-

tion 2) with game theory has been a fertile area of work for several decades (Geanakoplos

et al. 1989; Battigalli & Dufwenberg 2009).

5.1.5. Norms and equilibrium selection. Norms are enforced behavioral standards. Several

different formal models of norms share a similar logic. The norm dictates that one must

behave a certain way (contributing to a public food, for instance) or else be in bad standing,

and it dictates that one must punish (or withhold cooperative benefits from) those in bad

standing, or else be in bad standing (Bicchieri 1990; Ostrom 2000; Boyd & Richerson 1992).

The self-reinforcing nature of this arrangement is quite apparent: Not only the norm is

enforced, but also enforcement is enforced. Indeed, under certain assumptions, this logic

can render any behavioral standard an equilibrium, even if the behavior itself is contrary

to peoples’ interests (Boyd & Richerson 1992). Thus, for instance, in many societies there

is a norm that one must contribute to public goods (which creates welfare and produces

mutual benefit), but in other societies there is a norm that one ought not to contribute to

public goods—those cooperators who contribute thus get punished (Herrmann et al. 2008).

At first blush, the power of self-enforcing social norms to explain the maintenance of any
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arbitrary behavior would seem to make a mockery of the predictive power of the equilibrium

concept—after all, anything could be predicted. In order to help us predict which specific

equilibria will tend to be enforced by social norms—and, therefore, to explain the social

norms we tend to see around us—we need the additional conceptual tool of “equilibrium

selection” (Harsanyi et al. 1988). As noted above, different equilibria will yield different

Equilibrium selection:
A

process by which

certain equilibria
come to

predominate over

others in a game.
payoffs: A social norm that enforces the equilibrium “do contribute to public goods” will

tend to leave people better off, for instance, than one enforces the equilibrium “don’t”.

(Unsurprisingly, countries characterized by the former norm tend to be wealthier than

those characterized by the latter). Because people prefer social arrangements that leave

them better off, they will sometimes choose social norms that they anticipate will lead

to better equilibria (Levine et al. 2020; Redish 2022), and both cultural and biological

evolutionary processes also tend to favor those equilibria that produce better (i.e., fitter)

outcomes (Henrich 2004; Boyd & Richerson 1992).

6. CONCLUSION

Social psychology is animated by the impulse to bring scientific order to the complexity

of human social life through basic principles of mental organization. Surveying the state

of their fledgling field, it founders saw considerable energy devoted to documenting the

complexity, but relatively little to ascertaining the underlying principles. They assumed,

however, that formal methods would eventually reveal the hidden logic of human sociality.

This hope is no less ambitious today than it was 80 years ago, yet we have made

considerable progress. Across the social cognitive sciences, a family of related models posits

that we represent the world, and each other, largely in terms of probabilistic causal models.

They explain how we can learn much from limited data, by the logic of Bayesian inference.

They explain how we organize our knowledge into simple and practical attributions of

responsibility. They explain how we can make adaptive decisions, via the logic of reward

and value. And, they explain how we negotiate the interdependence of our choices, via the

logic of game theory. Each of these theories can be fruitfully composed with the others.

The same probabilistic causal models support attribution, inference, and choice. The same

logic of reward maximization supports people’s own choices and their inferences about how

others will choose. And, rational choices of this kind—together with a mental model of

others’ rational choices—will tend to lead human agents towards the equilibria predicted

by game theory.

Any serious social scientist must occasionally experience crises of confidence about our

collective intellectual enterprise. Human sociality is confounding complex, and it can seem

that every claim is subject to counterexamples and contextual limitations. Ideas are chron-

ically misunderstood or misconstrued. We squander precious years adjudicating the bound-

aries of our theories, their predictions, and the very meaning of the concepts they invoke.

It is against this background that formal models offer their greatest appeal. Because of

their compositionality, the conventions upon which they depend, and the level of abstraction

at which they are defined, it becomes clearer what each hypothesis states, and what each

concept means; how it differs from others; how data would bear on it; how it adds to

our collective state of knowledge; how it can be applied and extended beyond its original

purview. Each individual contribution remains small, but numbers have a way of adding

up. Eventually it becomes apparent that we are, after all, collaborating on a project of

ever-growing explanatory reach.
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